Evone Control Unit

1. Touch screen
2. Area to place the Evone Cartridge
3. Release-button to release Evone Cartridge from control unit

Additional materials

1. Evone Cartridge – to be inserted into the control unit as depicted
2. Evone Airway Adapter
3. Humid-Vent Filter Pedi straight (HME Filter)
4. Evone Conventional Tube Adapter (CTA)
5. Conventional adult endotracheal tube (≥5 mm ID)

Installation and set up

1. Switch on Evone.
2. Perform Startup checks successfully.
3. Patient set up menu: select patient gender and fill out characteristics. Accept default settings or start with last used.
4. Check and if required adapt alarm limits.

Note that default ventilation settings are:
- FiO₂ 50%
- Inspiratory Flow 12 L/min
- I:E ratio 1:1.0
- Peak 15 mbar
- EEP 5 mbar

Ventilation with conventional tubes

1. Sedate the patient (TIVA).
2. Intubate patient as usual with tube of choice.
3. Oxygenate patient as preferred to allow deepening of sedation.
4. Connect tube to CTA of Evone when sedation is optimized.
5. Start ventilation in FCV® mode. A triangular pressure curve appears on the screen (Fig. 3).

6. If needed adapt ventilation settings:
 - FiO₂ as preferred
 - EEP as preferred
 - Peak to adjust Tidal Volume
 - Inspiratory Flow to adjust Minute Volume.

Sedation, relaxation, and weaning

Because of the small lumen (high resistance) of the breathing circuit, coughing may result in tube dislocation.

Note that spontaneous breathing is not possible when the CTA is connected to the conventional adult endotracheal tube.

In case of light sedation (indicated by e.g. irregular pressure curves, increased/decreased compliance, coughing, BIS>60, TOF>90%):
- Disconnect CTA.
- Use alternative means of oxygenation if preferred.
- Optimize sedation.
- Reconnect CTA when sedation is optimized and continue FCV® ventilation.

For weaning the patient:
- Set FiO₂ as preferred.
- Disconnect CTA from tube to allow weaning using preferred other mechanical ventilator.

For more details on ventilation of ARDS- / COVID-19 patient and optimization of FCV® based on compliance, see backside.
IN CASE OF ARDS- / COVID-19 PATIENTS

Start FCV® after intubation
- Recommended settings:
 - FiO₂ ≥ 80%
 - Flow 14 L/min
 - I:E ratio 1:1.0
 - Peak 25 mbar
 - EEP 10 mbar

Start FCV® after VCV
- Recommended settings:
 - FiO₂ ≥ 80%
 - Flow 14 L/min
 - I:E ratio 1:1.0
 - Peak same as Pplat
 - EEP same as VCV

Start FCV® after PCV
- Recommended settings:
 - FiO₂ ≥ 80%
 - Flow 14 L/min
 - I:E ratio 1:1.0
 - Peak same as during PCV
 - EEP same as during PCV

Adjust FiO₂ based on SpO₂ or PaO₂

Obstructive problems
(e.g. COPD / asthma)
High resistance

Restrictive problems
(e.g. pneumonia, ARDS)
Low compliance

High resistance
Dynamic Driving Pressure > Static Driving Pressure
End Inspiration: P_{trach} > P_{alv}
End Expiration: P_{trach} < P_{alv}

Normal resistance
Dynamic Driving Pressure ~ Static Driving Pressure
P_{trach} ~ P_{alv}

Confirm pressure settings by judging the plateau pressure displayed every 10 cycles in the pressure curve (orange part in curve in figure below)

Note: The absolute discrepancy in pressure between the dynamic intratracheal pressures and static (mean alveolar) pressure increases with higher airway resistance and/or higher inspiratory and expiratory flow.

Note: When the similar pressure settings of PCV or VCV in FCV® result in too small tidal volumes, it is suggested to first increase driving pressure (increase Peak and /or decrease EEP) before starting optimization.

Optional: Individual optimization of FCV® ventilation based on patient compliance

Note: These optimization steps have shown beneficial effects in individual patients and a porcine study1,2, but have not yet been validated in randomized controlled trials.

1 Find ‘Best EEP’
- Change both EEP and Peak stepwise by 1-2 mbar;
- Monitor tidal volume (VT): Increased VT indicates increased respiratory system compliance (C_RS) and improved ventilation.
- Choose EEP setting resulting in highest VT;
for similar VT, choose lowest EEP for circulatory reasons.

Note: Do not change settings too rapidly. Adequate application of the following steps requires equilibration periods of at least 2 minutes.

2 Find ‘Best driving pressure’
- Change Peak pressure stepwise by 1-2 mbar.
- Monitor VT:
 • Per mbar increase of driving pressure, VT is expected to increase with value of C_RS.
 • If VT increases over-proportionally, C_RS will increase -> improved ventilation;
 • If VT increases under-proportionally, C_RS will decrease -> ventilation not further improved.
- Chose Peak setting resulting in highest C_RS.

Note: This step might lead to the application of higher tidal volumes than generally advised by common guidelines.

3 Find ‘Best flow’
- Adjust flow depending on measured etCO₂ and/or PaCO₂.
- To reduce etCO₂ and/or PaCO₂: increase inspiratory flow
 • Results in higher frequency with same VT, and higher minute volume.
- To increase etCO₂ and/or PaCO₂: decrease inspiratory flow
 • Results in lower frequency with same VT, and lower minute volume.

Note: The achievable minute volume of Evone is limited to maximally 9 L/min.

References:
Poster WAMM 2019

© 2022 Ventinova, Eindhoven The Netherlands, all rights reserved.
® 2022 Ventinova, FCV and Evone are registered trademarks of Ventinova Medical.