Evone Control Unit

1. Touch screen
2. Area to place the Evone Cartridge
3. Release-button to release Evone Cartridge from control unit

Additional materials

1. Evone Cartridge – to be inserted into the control unit as depicted
2. Evone Airway Adapter
3. Humid-Vent Filter Pedi straight (HME Filter)
4. Evone Conventional Tube Adapter (CTA)
5. Conventional adult endotracheal tube (≥5 mm ID)

For more details on ventilation of ARDS- / COVID-19 patient and optimization of FCV® based on compliance, see backside.

Installation and set up

1. Switch on Evone.
2. Perform Startup checks successfully.
3. Patient set up menu: select patient gender and fill out characteristics. Accept default settings or start with last used.
4. Check and if required adapt alarm limits.

Note that default ventilation settings are:
- FiO₂ 50%
- Inspiratory Flow 12 L/min
- I:E ratio 1:1.0
- Peak 15 mbar
- EEP 5 mbar

Ventilation with conventional tubes

1. Induce anesthesia (TIVA).
2. Intubate patient as usual with tube of choice.
3. Oxygenate patient as preferred to allow deepening of anesthesia.
4. Connect tube to CTA of Evone when anesthesia is optimized.
5. Start ventilation in FCV® mode. A triangular pressure curve appears on the screen (Fig. 3).

6. If needed adapt ventilation settings:
 - FiO₂ as preferred
 - EEP as preferred
 - Peak to adjust Tidal Volume
 - Inspiratory Flow to adjust Minute Volume.

Sedation, relaxation, and weaning

Because of the small lumen (high resistance) of the breathing circuit, coughing may result in tube dislocation.

Note that spontaneous breathing is not possible when the CTA is connected to the conventional adult endotracheal tube.

In case of light anesthesia (indicated by e.g. irregular pressure curves, increased/decreased compliance, coughing, BIS>60, TOF>90%):
- Disconnect CTA.
- Use alternative means of oxygenation if preferred.
- Optimize anesthesia.
- Reconnect CTA when anesthesia is optimized and continue FCV® ventilation.

For weaning the patient:
- Set FiO₂ as preferred.
- Disconnect CTA from tube to allow weaning using preferred other mechanical ventilator.
IN CASE OF ARDS- / COVID-19 PATIENTS

Recommended settings:
- FIO₂ ≥ 80%
- Flow 14 L/min
- I:E ratio 1:1.0
- Peak 25 mbar
- EEP 10 mbar

Recommended settings:
- FIO₂ ≥ 80%
- Flow 14 L/min
- I:E ratio 1:1.0
- Peak as Pplat
- EEP same as VCV

Recommended settings:
- FIO₂ ≥ 80%
- Flow 14 L/min
- I:E ratio 1:1.0
- Peak same as during PCV
- EEP same as during PCV

Obstructive problems
(e.g. COPD / asthma)
High resistance

Restrictive problems
(e.g. pneumonia, ARDS)
Low compliance

Adjust FiO₂ based on SpO₂ or PaO₂

Start FCV® after intubation

Start FCV® after VCV

Start FCV® after PCV

High resistance
Dynamic Driving Pressure > Static Driving Pressure
End Inspiration: P_{trach} > P_{alv}
End Expiration: P_{trach} < P_{alv}

Normal resistance
Dynamic Driving Pressure ~ Static Driving Pressure
P_{trach} ~ P_{alv}

Confirm pressure settings by judging the plateau pressure displayed every 10 cycles in the pressure curve (orange part in curve in figure below)

Note: The absolute discrepancy in pressure between the dynamic intratracheal pressures and static (mean alveolar) pressure increases with higher airway resistance and/or higher inspiratory and expiratory flow.

Note: When the similar pressure settings of PCV or VCV in FCV® result in too small tidal volumes, it is suggested to first increase driving pressure (increase Peak and/or decrease EEP) before starting optimization.

Optional: Individual optimization of FCV® ventilation based on patient compliance

Note: These optimization steps have shown beneficial effects in individual patients and a porcine study1,2, but have not yet been validated in randomized controlled trials.

1 Find ‘Best EEP’
- Change both EEP and Peak stepwise by 1-2 mbar;
- Monitor tidal volume (V_t): Increased VT indicates increased respiratory system compliance (C_{RS}) and improved ventilation.
- Choose EEP setting resulting in highest V_t;
 for similar V_t choose lowest EEP for circulatory reasons.

2 Find ‘Best driving pressure’
- Change Peak pressure stepwise by 1-2 mbar.
- Monitor V_t
 • Per mbar increase of driving pressure, V_t is expected to increase with value of C_{RS}:
 - If V_t increases over-proportionally, C_{RS} will increase -> improved ventilation;
 - If V_t increases under-proportionally, C_{RS} will decrease -> ventilation not further improved.
- Chose Peak setting resulting in highest C_{RS}.

3 Find ‘Best flow’
- Adjust flow depending on measured etCO₂ and/or PaCO₂.
- To reduce etCO₂ and/or PaCO₂: increase inspiratory flow
 • Results in higher frequency with same V_t and higher minute volume.
- To increase etCO₂ and/or PaCO₂: decrease inspiratory flow
 • Results in lower frequency with same V_t and lower minute volume.

Note: The achievable minute volume of Evone is limited to maximally 9 L/min.

References: